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On steady linear diffusion-driven flow
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Wunsch (1970) and Phillips (1970) (Deep-Sea Res. vol. 17, pp. 293, 435) showed that
a temperature flux condition on a sloping non-slip surface in a stratified fluid can
generate a slow steady upward flow along a thin ‘buoyancy layer’. Their analysis is
extended here to the more-general case of steady flow in a contained fluid where
buoyancy layers may expel or entrain fluid from their outer edge. A compatibility
condition that relates the mass flux and temperature gradient along that edge is
derived, and this allows the fluid recirculation and temperature perturbation to be
determined in the broader-scale ‘outer flow’ region. The analysis applies when the
Wunsch–Phillips parameter R is small, in the linear case for which the density
variations are dominated by a constant vertical gradient.

1. Introduction
In concurrent and closely related studies, Wunsch (1970) (hereinafter referred to

as W) and Phillips (1970) (hereinafter referred to as P) demonstrated that flow
is generated in an otherwise quiescent but linearly stratified fluid if any of the
boundary surfaces is sloping. Both studies proposed that under suitable conditions
the no-flux boundary condition on the temperature (or more generally, density) on
a sloping boundary curved the isolines locally and induced a slow steady flow in a
thin layer along the slope. P presented some experimental results that demonstrated
the phenomenon, albeit as an early stage of an unsteady flow that would eventually
become homogeneous and stagnant.

This paper aims to clarify the steady form of this problem in a closed container
in the presence of ongoing forcing. Woods (1991) and Quon (1989), for example,
examined that problem but inherited some of the simplifying assumptions made by
W and P – in particular that the induced thin layer does not entrain or expel fluid
from its outer edge when the boundary has a constant slope. That assumption is
appropriate in the idealized semi-infinite situation but in a closed container it can
overconstrain the solution. In contrast, this paper seeks a more general solution in
the layer, from which it is possible to determine the steady broader-scale flow that
can be induced in a contained fluid.

For simplicity of presentation, the temperature is used here as a proxy for density,
but the analysis applies equally to other sources of stable vertical density variations.
(Hereinafter the opposite direction to the gravitational force is referred to as ‘vertical’.)
W and P show that the key parameter for these flows is R =

√
ν∗κ∗/N∗L∗2, in terms of

the viscous and temperature diffusivities, the Brunt–Väisälä frequency, and a typical
length scale. As in the previous studies it is assumed here that R � 1 but further
it is assumed that the induced temperature variations in the fluid are much smaller
than those of the background temperature profile. W noted the analogy between this
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configuration and the two-dimensional flow of a rapidly rotating fluid, as described
by Veronis (1967) for example, and used that to assist in his analysis.

For steady ‘diffusion-driven flows’ in a closed container it is shown here that there
are three main flow regions. The first, and most important, region is the so-called
‘buoyancy layer’ (Peacock, Stocker & Aristoff 2004) that was originally described by
W and P in the context of a semi-infinite self-similar flow along a sloping planar
boundary. Their analysis is extended here to account for leading-order temperature-
gradient variations at the outer edge of the layer, and a ‘compatibility condition’
between the mass and temperature fluxes at that edge is derived, using a similar
approach to that introduced by Jacobs (1964) for rotating flows. This provides an
important link between the temperature flux boundary condition and the broader-
scale flow, via the buoyancy-layer flow.

The second region, referred to as the ‘outer flow’ here, occupies the bulk of the
container and the motion in it is vertical to leading order. For the self-similar flow
considered by W and P it was assumed that the temperature gradient was constant
in this region, with no induced flow – as is appropriate for the early stages of
the unsteady contained flow. Subsequently, Quon (1983) considered a similar steady
regime in a closed container under the same conditions, with the constant temperature
gradient being maintained by specifying the temperature on part of the boundary.
Woods (1991) recognized that the leading-order temperature gradient may vary within
the outer flow, and accounted for some aspects of the mass flux closure, but effectively
assumed that the vertical mass flux was constant in the outer region and therefore
did not fully link its temperature-gradient variations to the mass flux into and out of
the buoyancy layer.

In some circumstances the buoyancy layer may be required to gain or shed fluid over
a small distance, for example when there are sudden changes in boundary conditions.
This effectively creates a ‘point’ sink or source on the edge of the outer flow, the
fluid from which is redistributed across the container via the third important region,
referred to as an ‘R1/3 layer’ here. This layer connects that mass flux with that required
for the outer flow, and is equivalent to the Stewartson E1/3 layer in the rotating-flow
context. As occurs in that situation, ‘jump conditions’ can be specified on the outer-
flow variables across the layer, which enable the outer flow to be determined uniquely.

The scaling and governing equations for this problem are outlined in § 2, based on
W and for the case of a flow dominated by a steady constant background temperature
gradient. The three key regions of a steady diffusion-driven flow in a closed container
are then described in § 3 based on an asymptotic analysis for R � 1. The analysis is
illustrated in § 4 by considering the flow in a tilted square container, similar to that
in Quon (1983) but with slightly different boundary conditions. The results of the
analysis are then compared with numerical solutions of the full governing equations
in § 5.

2. Configuration and governing equations
Consider a steady two-dimensional flow of a viscous stratified fluid in a closed

container with a typical length scale L∗. A Cartesian coordinate system (x∗, y∗, z∗) is
defined so that gravitational acceleration g∗ is aligned with the negative z∗-direction.
The velocity components in these coordinates are denoted as (u∗, v∗, w∗), and it is
assumed both that v∗ = 0 everywhere and that u∗ and w∗ are both independent of
y∗. The overall temperature in the fluid is denoted by T ∗(x∗, z∗) and the Boussinesq
approximation is used, based upon a constant background density ρ∗

00. The coefficient
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of thermal expansion α∗, thermal diffusivity κ∗ and kinematic viscosity ν∗ are all
taken to be constant.

To keep the analysis linear, it is assumed that the temperature profile is dominated
by a steady, stable and constant temperature gradient which is maintained by
applying boundary conditions around the container that ensure that the background
stratification is not reduced over time through diffusion. In effect, this assumption
was also made by W and P for their semi-infinite flow region outside of the buoyancy
layer. In particular, it is assumed that the background stratification throughout
the container is only slightly perturbed by the induced motion, with temperature
variations of relative size ε � 1.

As in Veronis (1967) and W, lengths are scaled using L∗, so (x, z) = (x∗, z∗)/L∗,
and the temperature scale �T ∗ = 1

4
L∗dT ∗

0 /dz∗ is based upon the linear background
stratification T ∗

0 (z∗) = T ∗
00+4�T ∗(z∗/L∗). A non-dimensional temperature perturbation

T (x, z) is then defined through

T ∗(x∗, z∗) = T ∗
0 (z∗) + 2(�T ∗)ε

√
σ T (x, z), (2.1)

where σ = ν∗/κ∗ is the Prandtl number. The velocity is non-dimensionalized using the
Brunt-Väisälä frequency N∗ =(g∗α∗�T ∗/L∗)1/2 and length scale L∗, and is scaled by
the perturbation magnitude ε so that (u, w) = (u∗, w∗)/εN ∗L∗. Outside the buoyancy
layer the pressure is predominantly hydrostatic so variations from the hydrostatic
background pressure are non-dimensionalized using ε

√
σρ∗

00(N
∗L∗)2, to yield a scaled

pressure p.
As noted by W, the key dynamical parameter that arises from the above scaling is

R =
√

ν∗κ∗/N∗L∗2
, (2.2)

and this is taken to be small here, with the Prandtl number σ assumed to be O(1) with
respect to R. The magnitude of ε is chosen to ensure that the background temperature
gradient remains constant to leading order and that the governing equations are linear
everywhere, which requires that ε

√
σ � 1.

Under these assumptions, the governing equations are identical to those in W,
namely

0 = −px + R∇2u, −2T = −pz + R∇2w and 2w = R∇2T , (2.3a–c)

with the continuity equation ux + wz =0. A streamfunction ψ can also be defined
with

u = ∂ψ/∂z and w = −∂ψ/∂x (2.4)

so that continuity is automatically satisfied. The similarity between these equations
and those for a two-dimensional rapidly-rotating flow at zero Rossby number was
noted by Veronis (1967). That analogy also extends to some key regions of the flow
for R � 1, with R corresponding to the Ekman number E in a rotating flow.

In this paper, specifying O(1) values of Tn = ∂T /∂n at all boundary points provides
the ‘driving force’ for the steady flow, where n is the outward normal. Non-slip
boundary conditions are used for the velocity components (u, w), which in turn
implies (via (2.3c)) that the average value of ∂T /∂n around the boundary must be
zero. The average value of T around the boundary is also set to zero. In contrast,
Quon (1983) considered a mixture of boundary conditions on T with, effectively,
T =0 on some parts of the boundary.

Note that the boundary conditions impose no separate requirements on the
magnitude of ε so its size is determined solely by the assumption above that the
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linearized equations (2.3) remain valid throughout the entire flow. That limitation
ε � 1 does however mean that the fully insulating condition ∂T ∗/∂n∗ = 0 cannot be
applied on any boundary since that would require ε

√
σ =O(1) – except in the special

case when T is constant throughout the bulk of the container. As a result, a non-zero
overall temperature flux ∂T ∗/∂n∗ is effectively applied all around the boundary here
as a means of both maintaining the steady constant background temperature gradient
and providing a small ongoing driving force for the buoyancy-layer flow.

3. Flow regions
There are three key flow regions for a steady ‘diffusion-driven flow’ in a closed

container. On vertical or sloping boundaries there are thin ‘buoyancy layers’, on
horizontal lines there can be thin ‘R1/3 layers’, while the remainder is described as
the ‘outer flow’.

3.1. The buoyancy layer

This is arguably the most important region as it provides the driving force behind
the flow, via the specified flux condition on T . It has thickness O(R1/2) and can form
on any surface that is not horizontal, including a planar surface with constant slope
α. It can also exist on any vertical surface, where it may act as a means of mass
redistribution.

As in W, the flow above a sloping planar surface is considered when the surface is
at an angle α, measured here as anticlockwise from horizontal. A rotated coordinate
system (x̂, ẑ) can be defined, with x̂ = x cosα + z sin α and ẑ = − x sinα + z cosα, and
corresponding velocity components (û, ŵ). The equations of motion (2.3) become

−2T sinα = −px̂ + R∇̂2û, −2T cosα = −pẑ + R∇̂2ŵ, (3.1a, b)

2(û sinα + ŵ cos α) = R∇̂2T , (3.2)

with ûx̂ + ŵẑ = 0. At ẑ =0 the boundary conditions û= ŵ =0 are applied, along with
a steady forcing condition ∂T /∂ẑ = − Tn(x̂) for a given function Tn.

For R � 1 and α �= 0 an expansion of the solution is sought of the form

p = p̂0(x̂, ζ ) + R1/2p̂1(x̂, ζ ) + · · · , û = R1/2û1(x̂, ζ ) + Rû2(x̂, ζ ) + · · · , (3.3a)

T = T̂0(x̂, ζ ) + R1/2T̂1(x̂, ζ ) + · · · , ŵ = Rŵ2(x̂, ζ ) + R3/2ŵ3(x̂, ζ ) + · · · , (3.3b)

using the boundary-layer coordinate ζ = ẑ/R1/2. The inclusion in this expansion of
the zeroth-order terms in p and T will be justified a posteriori when the outer flow is
considered below, but otherwise this form of solution is equivalent to that used by W.
From the leading-order terms in (3.1a) and (3.1b), both p̂0 and T̂0 are functions of x̂

only. At the next order, integration of (3.1b) yields p̂1(x̂, ζ ) = 2ζ T̂0(x̂) cos α + p̂10(x̂),
where p̂10(x̂) is yet to be determined, while (3.1a) and (3.2) give

−2T̂1 sinα = −∂p̂1

∂x̂
+

∂2û1

∂ζ 2
and 2û1 sinα =

∂2T̂1

∂ζ 2
. (3.4a, b)

The solutions of these that satisfy the boundary condition û1 = 0 on ζ = 0, and have
no exponential growing terms for large ζ , are

û1(x̂, ζ ) = Û1(x̂) exp(−ζ
√

| sinα|) sin(ζ
√

| sinα|), (3.5)

T̂1(x̂, ζ ) = sgnα Û1(x̂) exp(−ζ
√

| sinα|) cos(ζ
√

| sinα|) +
1

2

∂p̂1

∂x̂
(x̂, ζ ) cosec α. (3.6)
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Key differences from the solutions in W (apart from the sign of α) are the x̂-
dependence of Û1(x̂) and the ∂p̂1/∂x̂ term in (3.6), which allows for a more-general
form for T̂0(x̂).

The boundary condition ∂T̂1/∂ζ = − Tn, along with p̂1(x̂, ζ ), determines Û1(x̂) in
(3.6) in terms of both Tn(x̂) and T̂ ′

0(x̂). Introducing a scaled streamfunction ψ̂2 such

that ψ = Rψ̂2(x̂, ζ ) + O(R3/2) and û1 = ∂ψ̂2/∂ζ , with ψ̂2 = 0 at ζ = 0, the O(R) mass
flux ψ̂2(x̂, ∞) of the layer can be expressed in terms of Û1(x̂) from (3.5). Together,
these give

2ψ̂2(x̂, ∞) sinα − T̂ ′
0(x̂) cot α = Tn(x̂) (3.7)

for the buoyancy-layer flow. This is equivalent to the ‘Ekman compatibility condition’
originally derived by Jacobs (1964), which has been used extensively for rapidly
rotating flows (see, for example, Stewartson 1966). The advantage of this condition
is that it connects mass and temperature fluxes at the outer edge of the buoyancy
layer to the boundary condition Tn, without requiring the buoyancy-layer flow to be
evaluated.

If Tn is constant along a sloping boundary then both T̂ ′
0 and ψ̂2 can be independent

of x̂ along the outer edge of the layer, as in W and P, but generally they will both
vary with x̂. To determine them uniquely the mass flux in the broader-scale outer
flow must be considered, which depends in turn on the flow at the other boundaries
of the container.

In the original variables (x, z), (3.7) implies that the values of ψ and T at the outer
edge of the buoyancy layer are related through

ψ = 1
2
R

[
∂T

∂x
cot2 α +

∂T

∂z
cot α + Tn cosec α

]
+ O(R3/2), (3.8)

where Tn is the given boundary condition. This ‘compatibility condition’ extends the
mass-flux analysis in § 3 of P to the case where the external temperature gradient ∂T /∂z

is non-zero and also Tn is not determined by requiring a zero overall temperature
flux at the boundary. It can be simplified further when ∂T /∂x = 0 to leading order,
as below.

The condition (3.8) also applies on vertical boundaries (|α| = π/2), in which case the
flux along the buoyancy layer is proportional to Tn, with no flow if Tn = 0. It applies
for α < 0 as well, but not on horizontal boundaries, or indeed for α = O(R1/3). It
can also be used when α varies on an O(1) length scale, and for unsteady flows that
evolve over a sufficiently-long time scale (Page & Johnson 2008).

3.2. The outer flow

The flux condition (3.8) indicates that, under some conditions at least, an O(R)
flux can be generated at the outer edge of the buoyancy layer. This in turn would
induce O(R) velocities (u, w) in the region abutting the buoyancy layer, along with
temperature perturbations T of O(1). If (x, z) are O(1) in this ‘outer flow’ region then
(2.3) reduce to

0 = −px, −2T = −pz and 2w = R∇2T (3.9a–c)

to leading order. The solution can be expanded as

p = p0(x, z) + R1/2p1(x, z) + · · · , T = T0(x, z) + R1/2T1(x, z) + · · · , (3.10a)

w = Rw2(x, z) + R3/2w3(x, z) + · · · , ψ = Rψ2(x, z) + R3/2ψ3(x, z) + · · · , (3.10b)

where ψ is given by (2.4) and, from (3.9a, b), both p0 and T0 are independent of x.
The leading-order solution can then be written in terms of two functions f (z) and
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g(z) as

T0 = f (z), w2 = 1
2
f ′′(z) and ψ2 = − 1

2
xf ′′(z) + g(z). (3.11a–c)

W and P take T0 = 0, giving f ′′ = 0. Further, as Tn = 2 cosα/ε
√

σ is constant in
their case, (3.8) implies that ψ2 is also constant. As a result, no motion is induced in
the semi-infinite outer flow for their configuration. In a closed container, however, at
each value of z there are two boundaries in x, with conditions (3.8) to be satisfied at
each. This pair of constraints determines both f ′ and g at each z, at least to within
one arbitrary constant, and other forms of T0 and ψ2 are possible, as in § 4.2.

Woods (1991) described some properties of the flow in this ‘interior region’ but
much of his analysis assumed that ψ2 was constant on each boundary, via his
condition (2.2), and therefore his vertical velocity (2.5) differs from that above. For
the situations considered by Quon (1983), where T = 0 on one boundary, the adjacent
buoyancy-layer flow has T̂0 = 0 and hence T0 = 0 in the outer flow. Details of this case
are given in Page (2008) but in essence ψ2 for the outer flow is determined by Tn at
the other boundary.

As noted in § 2, the only requirement on ε for the steady analysis above to remain
valid is that ε

√
σ � 1. Once that condition is violated the left-hand side of (3.9c) must

be modified, as described in Page & Johnson (2008).

3.3. The R1/3 layer

Veronis (1967), W and Quon (1983) noted that ‘Stewartson layers’ of thickness
O(R1/3) and O(R1/4) can exist in these flows under some circumstances, by analogy
with the equivalent rotating-flow layers considered originally by Stewartson (1957).
Perhaps surprisingly, for the boundary conditions considered here the outer layer in
§ 3.2 represents the equivalent of the Stewartson E1/4 layer, even though it has O(1)
thickness.

Thin horizontal layers that are equivalent to Stewartson E1/3 layers can occur in
the current context when there is a fluid source (or sink) on a vertical (or sloping)
boundary. For example, Koh (1966) showed that a two-dimensional horizontal ‘jet-
like’ flow will develop in a viscous stratified fluid near a line mass sink, with a
similarity structure close to the sink. Owing to the linearity of the equations, these
results apply also to a source.

Moore & Saffman (1969) undertook a detailed analysis of E1/3 layers for a rapidly-
rotating fluid and analysed the strength and type of singularities that are allowable in
such layers. They confirmed the conjecture by Stewartson (1966) that some outer-flow
variables can be continuous across the layer. Details of the equivalent analysis in the
current context of an R1/3 layer are given in Page (2008), where it is demonstrated
that the layers enable a source (or sink) of fluid on the boundary to be redistributed
throughout the container along lines of constant z. It is also shown that

both T and ∂T /∂z must be continuous across the R1/3 layer (3.12)

but that w may be discontinuous. Along with the flux condition (3.8) at x boundaries,
this is sufficient to determine the outer flow uniquely when R1/3 layers are present.

4. Flow in a tilted square container
As an illustration of the solutions and principles outlined in § 3, the outer flow in

a square container that has been tilted 45◦ is considered. This is similar to one of
the cases considered by Quon (1983), and it has the advantage of being a simple
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geometry for which all boundaries are sloping. Specifically, the square here is taken
to have sides of length

√
2 so that the boundaries are at z = 1 ± (1 − |x|) for |x| � 1.

The flow is forced by using two different cases of the boundary condition ∂T /∂n= Tn

around the container, with further cases considered in Page (2008). The non-slip
boundary conditions u = w =0 are imposed and, as noted in § 2, for consistency this
requires that Tn must have an average value of zero. The temperature T is also taken
to have an average value of zero around the boundary, in order to fix the arbitrary
additive constant. The boundary conditions are chosen to ensure antisymmetry of
T and ψ about z = 1 and therefore only the solution for z < 1 is described, with
solutions for z > 1 obtained by replacing z with (2 − z) and changing the signs of T

and ψ .

4.1. Linear temperature variation

An interesting set of boundary conditions to consider are those which are locally
equivalent to the problem posed by W and P in a semi-infinite fluid. From § 2, the
overall scaled temperature in the fluid is 4z+2ǫ

√
σT , and the normal gradient of that

can be set to zero on all four boundaries by considering the problem with Tn =1 on
the two boundaries with z < 1 (and Tn = − 1 for z > 1). A suitable steady solution to
this problem is that the internal temperature gradient T ′

0 is constant everywhere, and
hence through (3.11c) that there is no outer flow, but it is still instructive to use this
case to illustrate the analysis in § 3, as well as to confirm that the solution is unique.

To deduce the outer flow, consider first the case of Tn = 1 along z = − x for
−1 < x < 0, where the compatibility condition (3.8) with α = − 1

4
π gives that

ψ2(−z, z) = 1
2

[

T ′
0(z) cot

(

− 1
4
π

)

+ (1) cosec
(

− 1
4
π

)]

= − 1
2
[f ′(z) +

√
2]. (4.1)

Along the boundary at z = x for 0 <x < 1, of slope α = 1
4
π, the same condition gives

ψ2(z, z) = 1
2

[

T ′
0(z) cot 1

4
π + (1) cosec 1

4
π

]

= 1
2
[f ′(z) +

√
2]. (4.2)

As noted in § 2, the outer-flow vertical velocity w2 is independent of x. Using the two
conditions above it is therefore given by

w2(z) = −
∂ψ2

∂x
= −

ψ2(z, z) − ψ2(−z, z)

z − (−z)
= − 1

2
[f ′(z) +

√
2]/z. (4.3)

From (3.11b), w2 is equal to 1
2
f ′′(z) and so it follows that f ′ must satisfy zf ′′+f ′ = −

√
2

for 0 <z < 1. This has general solution f ′(z) = −
√

2 + c/z for any constant c but for
T to be finite at the bottom corner, where z =0, then c must be zero.

To complete the determination of the outer flow, the unknown function g(z) in
(3.11c) can be found using either of the two boundary conditions. For example (4.2)
gives

ψ2(z, z) = − 1
2
(z)f ′′(z) + g(z) = 1

2
[f ′(z) +

√
2] (4.4)

and since zf ′′ + f ′ = −
√

2 then g(z) = 0 over 0 < z < 1.
The unique solution with a zero average temperature on the boundary is therefore

T0(z) =
√

2(1 − z) and ψ2(x, z) = 0. (4.5)

Generalizing this result, when the imposed temperature flux Tn on the boundaries of
any closed container is in balance with a linear temperature profile T0, then the only
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steady solution for the outer flow has no motion. Further, there is no mass flux along
the buoyancy layer and hence no upslope flow.

These boundary conditions, when combined with the background stratification,
yield an overall normal temperature gradient of zero on all four sides when ε =

√
2/σ .

While that case is beyond the strict applicability of the theory here, it is anticipated
that the solution will be the same as above so that the overall density field is
homogeneous everywhere with no motion. When comparing this to the experimental
observations of P and others, it is important to note that their observed upslope flows
were unsteady and will disappear once the problem has fully diffused and reached
equilibrium. Despite that, non-trivial steady solutions for small values of ε can be
generated for other choices of Tn.

4.2. Piecewise constant Tn

When the imposed temperature flux Tn varies around the boundary then it may not
always be in balance with the corresponding value of T ′

0 in the outer flow, and hence
a non-zero outer flow can be generated by the varying efflux from the buoyancy
layer, via (3.8). Conversely, once there is vertical motion in the outer flow then (3.11c)
implies that f ′′ must be non-zero and hence that T0 must deviate from a linear
variation in z. A example of this situation is when Tn = 0 on the lower part of the
boundary for z < 1

2
, with Tn = 1 for 1

2
<z < 1, Tn = − 1 for 1<z < 3

2
, and Tn = 0 for

z > 3
2

(to maintain antisymmetry). These conditions will induce outer-flow circulation
since were T ′

0 to balance Tn in each separate region of the outer flow, as occurs in § 4.1,
then T ′

0 would be discontinuous across z = 1
2
, 3

2
and vertical flow would be generated.

A similar analysis to § 4.1 shows that zf ′′ + f ′ = 0 for 0 <z < 1
2

and so f ′(z) = 0 to

avoid a singularity at z = 0. For 1
2
<z < 1, f ′ satisfies zf ′′ +f ′ = −

√
2 and the solution

is f ′(z) = −
√

2 + c2/z, as in § 4.1, but c2 need not be zero in this case. Instead, in
accordance with the conditions (3.12) across an R1/3 layer, c2 is determined by the
requirement that f ′(z) is continuous at z = 1

2
, so that c2 = 1/

√
2.

As in § 4.1, the condition (3.8) on x = z can be used to find g(z) in (3.11), since

ψ2(z, z) = 1
2
[f ′(z) +

√
2Tn] = − 1

2
(z)f ′′(z) + g(z), (4.6)

and for both cases of Tn this yields g(z) = 0, using the differential equations for f ′ in
each region. The solution overall is therefore

T0(z) = (1 − ln 2)/
√

2 and ψ2(x, z) = 0 for 0 < z < 1
2
, (4.7a)

T0(z) =
√

2(1 − z) + ln z/
√

2 and ψ2(x, z) = x/(2
√

2z2) for 1
2

< z < 1. (4.7b)

Clearly there is no flow in either the buoyancy layer or the outer flow for 0 < z < 1
2
.

For 1
2
<z < 1, however, the temperature gradient in the outer flow decreases with z

and reaches a minimum at z = 1−. The vertical velocity w2 is negative throughout the
outer flow, including above z = 1

2
, and decreases with z, without however reaching zero

at z = 1−. Correspondingly, the buoyancy layers on both boundaries are entraining
fluid from the outer flow, via the negative value of w2 at their outer edge, but note
that they already contain a non-zero flux at their starting position of z = 1

2
.

The form of solution above differs from that in Woods (1991), which included
leading-order density variations but effectively assumed that w2 ∝ 1/z in this case (via
his (2.3)) and also deduced that zT ′

0(z) is constant (see his (2.12)) for a steady flow. In
contrast, w2 ∝ 1/z2 here and T0 is more complicated (although it does also include a
log term). The differences arise from the varying entrainment into the buoyancy layer.
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The buoyancy layers start with non-zero flux and gain fluid as they move up the
sloping surfaces for z < 1. Antisymmetry requires that ψ =0 at z = 1 and so the
layers expel all their fluid over a short distance as z → 1. This is exactly the situation
discussed in relation to the R1/3 layers in § 3.3, and therefore such a layer is expected
along z = 1, over −1 <x < 1. This layer will expel fluid at z = 1− and feed the uniform
downward flow w2 in the outer flow for 1

2
<z < 1. Similarly, near z = 1

2
another R1/3

layer will entrain the remaining downward flux from above and redistribute it into the
start of both buoyancy layers at x = ± 1

2
. These R1/3 layers complete the leading-order

structure for the steady flow field and enable the fluid which is forced up the buoyancy
layers to recirculate throughout the closed container.

The boundary conditions here have been chosen to demonstrate the three key
regions of the flow. They do however also allow a qualitative interpretation of
oceanic shelf circulation, as most of the flow field would be unchanged if the region
z < 1

2
were replaced by deep water with vertical sides, along with a suitable surface

condition at z = 1.

5. Numerical results for the tilted square container
To substantiate the form of the recirculation indicated by the analysis of § 4, some

simple numerical calculations were performed with the full equations (2.3a–c) solved
on a uniform square grid with up to nx = nz = 200 grid intervals in each direction.
Standard second-order finite-difference equations were used for the derivatives and
Laplacian terms in the equivalent streamfunction–vorticity formulation. For fewer
than 80 grid intervals the resulting system of coupled linear equations were solved
directly using MATLAB on a general-purpose desktop PC. Although this is not the
most efficient approach, the run times were modest and the key features of the flow
were readily apparent. For very small values of R a finer grid was needed and a
time-dependent iterative approach was used.

The results of these calculations were sufficiently well-resolved for small values of
R to clearly indicate the key features of the two types of layers and the broader-scale
outer flow. The streamfunction field for the case in § 4.2 is shown in figure 1(a),
based on numerical solution for R =0.001, and the corresponding outer-flow solution
(4.7) is shown in figure 1(c). Clearly the latter represents the bulk of the flow, while
the R1/3-layer circulation is apparent in the former, with mass distributed between
the ends of the bouyancy layer and the outer flow. A surface plot of the steady
temperature field is shown for R =0.001 in figure 1(b) and clearly it is independent of
x in most of the container. In figure 1(d) the cross-sectional values of ∂T /∂z at x =0
are shown for various values of R, along with the values for the outer-flow solution,
and the latter is approached as R decreases. Further details of the numerical method,
as well as results for other boundary conditions, are provided in Page (2008).

6. Conclusions
The analysis presented here demonstrates a consistent flow structure for the

recirculation of a steady contained flow that is generated through the diffusion-
driven mechanism originally outlined by W and P. The analysis allows the buoyancy
layer to entrain or expel fluid at its outer edge, rather than having constant mass flux,
and this is linked to temperature-gradient variations in the broader-scale flow.

The linearization ε � 1 restricts the present analysis from applying directly to the
closed-container version of the problem considered by W and P. The varying mass
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Figure 1. (a) The streamfunction ψ and (b) temperature T in a tilted square container for
the boundary conditions in § 4.2, based on numerical solutions of (2.3) for R = 0.001. (c) The
outer-flow solution (4.7) with the R1/3 layers at z = 1/2, 1, 3/2 shown thickened. (d) Values of
∂T /∂z(0, z) for R = 0.004, 0.002 and 0.001 compared with the outer-flow solution (solid line).

flux in the buoyancy layer generates an O(1) temperature gradient in the outer flow,
which means that w in (2.3c) will be multipied by a function of z. This nonlinear case
is examined in Page & Johnson (2008), where it is shown that the buoyancy layer has
non-constant thickness but that the structure of the flow field is similar to that for
ε � 1.

The discussion here has concentrated on the effect of the finite horizontal extent
of the container in forcing an outer recirculating flow but it is actually the finite
vertical extent, or depth, that causes the buoyancy layer to depend on z (and so x).
In particular, Page & Johnson (2008) analyse the flow in a wide container and show
that the sidewall layers are independent of each other when the width to depth ratio
is large compared to R−1.

As noted in § 1, the experiments that demonstrate this phenomenon have in effect
observed it during the initial stages of an unsteady linearly stratified flow. That flow
would eventually settle down to a homogenous density field with no motion – as
happens for the case in § 4.1 when ε =

√
2/σ . A time-dependent analysis of that
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situation is described in Page & Johnson (2008), including for the case of a closed
container with a variably sloping bottom used in Peacock et al. (2004).
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